

MultiConference Invited Talk

Multiprocessor Csound: Audio-Pro with Multiple DSP�s
and Dynamic Load Distribution

Barry Vercoe

Media Lab, MIT
Cambridge, MA

U.S.A.

Michael Haidar
Analog Devices Inc

Norwood, MA
U.S.A.

Hidehito Kitamura
Taito Corporation
Tokyo 1028648

Japan

Singaram Jayakumar
Epigon Audio Pvt.
Bangalore 560 008

India

Abstract - The latest professional Karaoke system released in
Japan has no ASIC for sound synthesis and effects
processing, but instead a small group of load-sharing DSP
chips that cooperatively handle the varied and dynamically
varying tasks of complex high-quality audio performance.
The software-only system is a first for the professional audio
industry, heralding a new generation of downloadable and
task-sensitive software that delivers time-critical
performance from distributed general-purpose silicon. The
tasks of emulating a 64-voice orchestra plus real-time MPEG
decode, live voice tracking with pitch and tempo following
and a full range of audio effects processing are represented
in a network of active objects which are just-in-time serviced
by a cooperating array of SIMD DSP�s. A detailed
description of the system will conclude with a brief live
performance.

1 Prelude

he domain of digital audio has lately become a battle-field
of competing formats and representations (PCM, MP3,

AAC, AC-3, MPEG-4), each of them putting a stake in the
ground to claim the ideal balance between compression ratios
(affecting transmission and storage) and computational
complexity (compute power required at the client end). The
fickle public, always ready to trade up to the next fad, wants
to keep pace with the fast-moving content creator/providers
who are eager to take advantage of the latest audio effects and
to distribute their wares in whichever format seems to have its
stake most solidly in the ground.

Audio hardware manufacturers are caught in the middle.
They have a development period and time-to-market that lags
behind the rest of the music industry. And because their
solutions often take the form of application-specific devices
(ASICs), they can find that pursuing quality and robustness
can also flirt with obsolescence. The hardware industry must
adopt technologies that are continually flexible and scalable,

so that they can move with the outer ends of the industry that
traffic in new content and new patterns of listening.

2 The Multiple Tasks of a Comprehensive
Karaoke System

A compelling challenge is found in the Karaoke industry,
where impending market saturation has caused a search for
new functionalities within established tradition.

One missing functionality is in fact not new, but was an
integral part of Karaoke tradition in its earlier form. The first
Karaoke bars were Piano Bars, where a musician skilled at
playing the standards popular at the time (such as Enka,
similar to the show tunes of the American 40�s) would
provide sympathetic accompaniment for an amateur singer.
This gave the singer an opportunity to bare his soul to his
colleagues, to �ham it up� or �hang on a note or word�,
knowing that the pianist would lend full dramatic support.
That functionality�carefully following the singer by
constantly varying the tempo�disappeared entirely when
technology got into the act, and the pianist was replaced by a
machine.

A new functionality has arrived in the form of Background
Chorus. This is a prerecorded audio clip which periodically
joins the singer-soloist at various points in the song. For
storage reasons the audio clip is commonly encoded in MP2
or MP3 (i.e. MPEG 1 layers 2 or 3). This means the Karaoke
system must include a real-time MPEG decoder to reconstruct
the steady stream of pre-recorded PCM audio. Switching the
decoder on and off at the right time with the right file is
accomplished by an extra MIDI track, another �voice� in the
comprehensive MIDI file that drives the synthetic orchestra.

A few moments thought on what these two functionalities
bring will reveal that they are basically incompatible. An
MP3 file decoded to PCM audio has a fixed and
predetermined musical tempo, while a system following a
singer does not. And rate-changing a PCM stream will result

T

in unwanted pitch changes. The two cannot co-exist without
additional heavy signal processing.

A fully comprehensive Karaoke system should be able to
follow the singer�s tempo, be a 64-voice synthesizer, a reverb
and audio-post effects processor, a voice harmonizer, an
equalizer (EQ), and a word-prompter for the song-text. It
might need to be a melody prompter, a wrong-note corrector,
or eventually change the singer�s voice into that of a famous
star. It might do a few of these in parallel well, or it might
suddenly be asked to do all of them at once the best way it can
manage.

This is no longer a task for fixed hardware ASICs. This
requires flexible and downloadable functionality running on
an architecture that is scalable and load-sensitive. This is the
new reality for the audio industry.

3 The Csound Environment

Csound is a software audio processing system widely used
by the computer music community [1,2]. It allows a user-
defined set of instruments (signal-processing networks of
oscillators, spectral filters, time envelope shapers, effects
processors) to be invoked by items in a score (a time-ordered
event-list representing note-on and note-off commands plus
effects processing controls).

An instrument is defined as a template from which the
Csound monitor can construct any number of instantiations
(i.e may be invoked multiple times in parallel) and comprises
a threaded list of signal processing modules, each with a
unique state space for every single instantiation.

A score is a collection of time-critical requests which can
emanate from many different directions�an ascii event list, a
pre-existing MIDI file, a real-time MIDI stream (electronic
keyboard, controller, or streaming Ethernet), or a real-time
event-generating program�or from any combination or all of
these directions at the same time.

Additionally, Csound can analyze and respond to audio
from live microphone input, from a streaming file on disk, or
from a streaming network source�or from any or all of these
sources at the same time.

The nature of audio-processing in a Csound orchestra is
defined by its instruments. Each instrument template can be a
model of some audio-processing algorithm such as wave-table
synthesis, additive synthesis, FM synthesis, linear prediction,
phase vocoder, formant (FOF) synthesis, wave-shaping,
physical modeling. Other instruments may perform analysis
of live input such as pitch tracking [1,3,4], which can control
the individual pitches of a vocal Harmonizer. Another may
analyze the live input to perform tempo tracking [1,3,4],
which in turn will influence the tempo of events performed in
the current score. Yet others might add audio effects such as
spatialization and reverb. All of these instruments and their
imbedded algorithms can be invoked at the same time, and

there can be any number of instantiations of each instrument
at any particular moment.

The independence of dozens of simultaneously performing
instruments is guaranteed by the unique state space that
defines each instantiation. When a single note is turned off,
the state space of the sounding instrument may be returned to
the memory pool and thus become available for instantiation
of some other instrument type. This amounts to continuous
garbage collection. In an implementation with limited
memory (such as a real-time hardware synthesizer) there are
numerous algorithms that can be invoked for streamlining
this process.

All processing within Csound is done in floating-point
arithmetic, and the conversion to and from fixed-point audio
is done as the streams enter and leave the Csound
environment. Csound processes audio at CD rates (44.1
KHz) and proceeds through chronological time by block-
processing the audio in control period blocks of 1 to 10
milliseconds. Since each musical note will last for many such
periods, this means that each score event and the instantiated
instrument assigned to perform it can together be viewed as a
continuous active object whose momentary performance
deadline is the end of the current control period. In a dense
part of a symphony orchestra simulation there may be
hundreds of these objects alive at any one moment.

The original Csound is now an Open Source standard used
the world over [2]. A version of Csound called NetSound has
become the core technology in MPEG-4 audio [5,6]. Some
applications of Csound�s unique spectral data types can be
found in [3].

4 Extended Csound�Enabling a DSP as an
All-Purpose Real-Time Audio Processor

Many tasks of Csound processing are not well-suited to
general-purpose serial processors, and some of these�
converting between time-domain and frequency-domain
signals and invoking several iterations of small loops of
code�will give an array processor with built-in butterfly
hardware, SIMD processing power, and a non-trivial amount
of on-chip memory a distinct advantage over serial
processors. This is especially the case for a chip that
specializes in high-speed floating point processing.

In 1995 Csound was ported to the Analog Devices ADSP-
21060, for which ADI developed a series of hosting PCI
boards that included audio codecs, and Uarts suitable for real-
time MIDI I/O. The sudden propelling of Csound into real-
time interactive mode engendered an explosion of its audio
Opcode repertoire. Moreover, its ability to handle MIDI files
and streams was greatly extended. This new version now
with over 300 opcodes became known as Extended Csound
[7].

Some advantages were immediate. The lightning response

of this new system was evident when it was played as a
keyboard synthesizer. The best keyboards in the industry
have a keystroke-to-sound delay of less than 5 milliseconds.
The delay for Extended Csound is just two control periods�
one for the active object processing described above, one-half
for injecting the MIDI event into the active event list, and
one-half for placing the resulting audio in the buffered output
channel. When the control period is set to 1 msec, keyboard
response is 2 msecs�a response unknown in the industry.

One innovation was especially effective here. The MIDI
Manager, a program that fields incoming commands and
resends them to the synthesizer units, was not relegated to a
host microprocessor as in systems that incorporate ASIC�s for
their horsepower. Instead it is DSP-resident and interrupt
driven, so that incoming events are immediately instantiated
and inserted into the threaded list of active instruments. The
MIDI Manager is basically a resource-sharing object amongst
other instantiated objects.

Other advantages stem from the independent instantiation
of all active objects (see above). Commercial synthesizers are
typically built upon a single audio-processing method (DX-7
FM, Roland LA synthesis, Kurzweil and Ensoniq wave-table,
Korg physical model), and though the computational
complexity of a single voice is different for each synthesizer,
it is the same for each note the instrument plays, so that the
computational requirement for each note is trivial to predict.

Extended Csound is different. Since it can be any or all of
the above algorithms simultaneously, each active note will put
a different load on the resources depending on its specific
computational complexity. To deal with this, each instrument
prototype has built-in load-sensing code that can dynamically
measure the computational cost of its instantiations. When
the Csound monitor senses it is falling behind (i.e the output
DAC buffer is emptying much faster than it is being filled), it
can accurately and gently (i.e. silently) remove just the right
number of inner overloading voices for stability to be
regained.

The success of Extended Csound�ADSP combination in
professional demonstrations soon led to requests that it be
directed at tasks requiring considerably more compute power.

5 Multiprocessor Csound: Dynamic Load
Distribution amongst Multiple Resources that
can handle Unpredictable Demands

The ADSP 21000 series of signal processors was designed

to run co-operatively over a dedicated external bus that could
accommodate up to six processors in tight synchrony. The
on-chip memory of each processor has a unique bus address,
and DSP-to-DSP communication of semaphores and DMA
blocks of data can be in either single-target or broadcast
mode. Also, any processor can reach inside the status
registers of any other processor to find what is going on.

The applications that ADI had in mind were compute
intensive, either from breadth of data to be processed or the
depth of processing required. In either case a task is typically
subset in advance, and the data sent by DMA from one
processor to the next until the summary task is completed on
schedule.

In Csound processing, the load is unpredictable and the
network of dependencies is erratic. A keyboard player may
put his whole forearm on the instrument, or a new MIDI file
may suddenly request an entire change of voice models and
audio effects, or a singer may suddenly slow down while
simultaneously dialing a higher pitch transposition with full
voice harmonizer effects.

A task-list of varying and unpredictable length is easily
accommodated by the threaded list of active objects described
above. The challenge is to direct the compute power of six
DSP�s onto this dynamically varying task load. The solution
lies in organizing the DSP�s in a Master-Slave relationship,
modified to meet the inter-dependencies of certain tasks and
the strict real-time deadlines of control-period processing.

At the start of each control period, the Master processor
fields all incoming MIDI commands and score events, and
updates the list of instruments potentially active. Any new
instantiations are initialized at this time, meaning that their
new state memory space is allocated, any sampling oscillators
will be given compute cycles to locate their samples and reset
their phases, new filter coefficients will be determined, and
reverberators will allocate and clear their space to zero. All
of this happens in zero simulated time, since no output
samples are generated. And since there may be 20 or 40 new
Midi and score events at any one moment, this initializing
task is efficiently shared amongst all the processors available.

Once initialization is complete, the Master next divides the
list of active instrument tasks between all available
processors. This is done with pre-knowledge of the load
being placed on each one since (as in the single-DSP version)
each active object template maintains an estimate of the load
it will incur, calculated during preceding control periods.
This requires care, since some objects depend on others for
data, and the most intensive tasks should ideally be
distributed first. The Master will try to assign itself the least
work, since it must also field interrupts from MIDI event
arrivals and completed DMA transfers. The set of DSP�s can
now begin audio-generating performance.

If this dynamically balanced task list is found to place too
much load on the multi-processor resources, causing the
audio output buffer to drain, the same technique of voice-
stealing for single-processor applications works equally well
here. The Master processor will redistribute the currently
active objects whenever the threaded task-list changes, and
while this is normally due to notes being started and stopped
by the MIDI stream and score file, a soft-ware stolen note
will also trigger the same redistribution of resources.

A Csound active object list has a tree structure, in which

the large bulk of generating objects will gradually combine
their outputs and forward them to a lower network of effects
objects (delays, reverbs, etc). This incurs dependencies at
some nodes of the tree, and this must be understood by a
resource-conscious Master scheduler. Other dependencies
will derive from that fact that shared input signals (voice mic
and incoming audio streams) must be broadcast to all
dependent objects. Ultimately the path is towards a stereo
pair of effects-enhanced audio outputs, arriving on time
before the close of the current control period.

The passage of musical time results from a succession of
control periods, each receiving the resources it needs to
complete its tasks on time. A few moments thought will
reveal that every active audio object may be assigned to a
different DSP on successive control periods, and this is true.
In fact a single note of a melody may be successively
generated by all six DSP�s in just six control periods of a few
milliseconds each, and yet the melody note must emerge
clean and without blemish. This is possible due to the fact
that Multiprocessor Csound is truly object-oriented, and the
threaded task list is dynamically distributed between an
arbitrary number (1 to 6) of parallel cooperating processors.

6 Time-Smearing the Task Depth

Some refinements to this structure should be mentioned at

this point. First, merging several audio streams in a Csound
tree requires that all contributing processors must first
achieve sync. This is accomplished with the Csound sync
command, which forces all denoted resources to quiesce
before merging begins. Several levels of sync may be active
at a single time, with several merges possible in parallel.

Second, shared use of the dedicated bus for interprocessor
DMA�s and access to external blocks of data require secure
and fair arbitration. Since the tasks distributed to each
processor at the start of a control period will also determine
the order of DMA�s in each, a threaded DMA list enables
software chaining of DMA�s in the order they are needed.
Competing DSP�s will then participate in a software token-
passing scheme that assures that bus-lock is distributed
efficiently and without competitive thrashing.

Although graceful degradation of a large MIDI score is
handled by the voice-stealing described above, being able to
keep all DSP�s maximally busy is a preferred strategy. A
typical Csound tree may have a hundred simultaneous objects
near its top but only one or two large ones (reverbs) near its
base, which can leave some processors idle while a smaller
number work to complete the tree. Using tree-relevant
directives in the Orchestra template, compute-intensive
effects objects can be folded back to run at the top of the next
control period. While this complicates the tree, it enables
maximum utilization of resources, and its realization fits
neatly into the structures of Dynamic Load Distribution on
which Multiprocessor Csound is based.

7 A Major First for the Audio Industry

The impetus for developing an efficient Multiprocessor

Csound came from two Japanese companies, Denon (who first
licensed the technology from Analog Devices) and Taito
Corporation (the fourth largest Karaoke manufacturer in
Japan and the first to introduce Communication Karaoke).
Multiprocessor board design and software support was
provided by Epigonaudio. The goal of this initiative was to
bring the flexibility of software-only audio processing into an
otherwise rigid ASIC-dominated industry.

The result is a new Taito system called the Lavca. It uses 3
ADSP 21161 SIMD processors amassing 1.8 Gigaflops (peak)
of tightly-coupled multiprocessing to deliver professional
Karaoke performance including 64-voice MIDI synthesis, on-
the-fly MPEG decodes, full effects processing, pitch and
tempo modification, dynamic EQ, voice tracking and
enhancement such as following tempo changes and correcting
wrong pitches. The audio system is paired with a custom
video system, and both are supported by an audio subsystem,
various video monitoring and display devices, and a host
interface that can access data streams via internet and
satellite.

The absence of audio-processing ASIC�s in a professional
audio product is a first for the audio industry. Although the
system is available only in Japan, this paper will conclude
with a live demonstration of the flexibility and power of its
comprehensive software-only audio-processing.

8 References

[1] Vercoe, B.L., and Ellis, D.P.W. (1990) �Real-time

Csound: Software Synthesis with Sensing and Control,�
in Proceedings, ICMC, Glasgow, pp. 209-211.

[2] Boulanger, R.C. (Ed.), The Csound Book, Cambridge,
MA: MIT Press, 2000.

[3] Vercoe, B.L. (2000) �Understanding Csound�s Spectral
Data Types,� in Boulanger, R.C. (Ed.), The Csound
Book, Cambridge, MA: MIT Press, pp. 437-447

[4] Vercoe, B.L. (1997) �Computational Auditory Pathways
to Music Understanding,� in Deliege I. and Sloboda J.
(Eds.), Perception and Cognition of Music, East Sussex,
UK: Psychology Press, pp. 307-326.

[5] Vercoe, B.L., Gardner, W.G., and Scheirer, E.D. (1998)
�Structured Audio: Creation, Transmission, and
Rendering of Parametric Sound Representations ,� in
Proceedings of the IEEE 86:5 (May 1998), pp. 922-940.

[6] Scheirer, E. D. and Vercoe, B.L. (1999). �SAOL: The
MPEG-4 Structured Audio Orchestra Language,�
Computer Music Journal 23:2 (Summer 1999), pp 31-51.

[7] Vercoe, B.L. (1996) �Extended Csound,� in Proceedings,
ICMC, Hong Kong, pp 141-142.

