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Abstract - The latest professional Karaoke system released in 
Japan has no ASIC for sound synthesis and effects 
processing, but instead a small group of load-sharing DSP 
chips that cooperatively handle the varied and dynamically 
varying tasks of complex high-quality audio performance.  
The software-only system is a first for the professional audio 
industry, heralding a new generation of downloadable and 
task-sensitive software that delivers time-critical 
performance from distributed general-purpose silicon.  The 
tasks of emulating a 64-voice orchestra plus real-time MPEG 
decode, live voice tracking with pitch and tempo following 
and a full range of audio effects processing are represented 
in a network of active objects which are just-in-time serviced 
by a cooperating array of SIMD DSP�s.  A detailed 
description of the system will conclude with a brief live 
performance. 

 
 

1 Prelude 
 

he domain of digital audio has lately become a battle-field 
of competing formats and representations (PCM, MP3, 

AAC, AC-3, MPEG-4), each of them putting a stake in the 
ground to claim the ideal balance between compression ratios 
(affecting transmission and storage) and computational 
complexity (compute power required at the client end).  The 
fickle public, always ready to trade up to the next fad, wants 
to keep pace with the fast-moving content creator/providers 
who are eager to take advantage of the latest audio effects and 
to distribute their wares in whichever format seems to have its 
stake most solidly in the ground. 

Audio hardware manufacturers are caught in the middle.  
They have a development period and time-to-market that lags 
behind the rest of the music industry.  And because their 
solutions often take the form of application-specific devices 
(ASICs), they can find that pursuing quality and robustness 
can also flirt with obsolescence.  The hardware industry must 
adopt technologies that are continually flexible and scalable, 

so that they can move with the outer ends of the industry that 
traffic in new content and new patterns of listening. 

  
2 The Multiple Tasks of a Comprehensive 
Karaoke System 
 

A compelling challenge is found in the Karaoke industry, 
where impending market saturation has caused a search for 
new functionalities within established tradition. 

One missing functionality is in fact not new, but was an 
integral part of Karaoke tradition in its earlier form.  The first 
Karaoke bars were Piano Bars, where a musician skilled at 
playing the standards popular at the time (such as Enka, 
similar to the show tunes of the American 40�s) would 
provide sympathetic accompaniment for an amateur singer.  
This gave the singer an opportunity to bare his soul to his 
colleagues, to �ham it up� or �hang on a note or word�, 
knowing that the pianist would lend full dramatic support.  
That functionality�carefully following the singer by 
constantly varying the tempo�disappeared entirely when 
technology got into the act, and the pianist was replaced by a 
machine. 

A new functionality has arrived in the form of Background 
Chorus.  This is a prerecorded audio clip which periodically 
joins the singer-soloist at various points in the song.  For 
storage reasons the audio clip is commonly encoded in MP2 
or MP3 (i.e. MPEG 1 layers 2 or 3). This means the Karaoke 
system must include a real-time MPEG decoder to reconstruct 
the steady stream of pre-recorded PCM audio.  Switching the 
decoder on and off at the right time with the right file is 
accomplished by an extra MIDI track, another �voice� in the 
comprehensive MIDI file that drives the synthetic orchestra. 

A few moments thought on what these two functionalities 
bring will reveal that they are basically incompatible.  An 
MP3 file decoded to PCM audio has a fixed and 
predetermined musical tempo, while a system following a 
singer does not.  And rate-changing a PCM stream will result 
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in unwanted pitch changes.  The two cannot co-exist without 
additional heavy signal processing. 

A fully comprehensive Karaoke system should be able to 
follow the singer�s tempo, be a 64-voice synthesizer, a reverb 
and audio-post effects processor, a voice harmonizer, an 
equalizer (EQ), and a word-prompter for the song-text.  It 
might need to be a melody prompter, a wrong-note corrector, 
or eventually change the singer�s voice into that of a famous 
star.  It might do a few of these in parallel well, or it might 
suddenly be asked to do all of them at once the best way it can 
manage. 

This is no longer a task for fixed hardware ASICs.  This 
requires flexible and downloadable functionality running on 
an architecture that is scalable and load-sensitive.  This is the 
new reality for the audio industry. 
 
3 The Csound Environment 
 

Csound is a software audio processing system widely used 
by the computer music community [1,2].  It allows a user-
defined set of instruments (signal-processing networks of 
oscillators, spectral filters, time envelope shapers, effects 
processors) to be invoked by items in a score (a time-ordered 
event-list representing note-on and note-off commands plus 
effects processing controls). 

An instrument is defined as a template from which the 
Csound monitor can construct any number of instantiations 
(i.e may be invoked multiple times in parallel) and comprises 
a threaded list of signal processing modules, each with a 
unique state space for every single instantiation. 

A score is a collection of time-critical requests which can 
emanate from many different directions�an ascii event list, a 
pre-existing MIDI file, a real-time MIDI stream (electronic 
keyboard, controller, or streaming Ethernet), or a real-time 
event-generating program�or from any combination or all of 
these directions at the same time. 

Additionally, Csound can analyze and respond to audio 
from live microphone input, from a streaming file on disk, or 
from a streaming network source�or from any or all of these 
sources at the same time. 

The nature of audio-processing in a Csound orchestra is 
defined by its instruments.  Each instrument template can be a 
model of some audio-processing algorithm such as wave-table 
synthesis, additive synthesis, FM synthesis, linear prediction, 
phase vocoder, formant (FOF) synthesis, wave-shaping, 
physical modeling.  Other instruments may perform analysis 
of live input such as pitch tracking [1,3,4], which can control 
the individual pitches of a vocal Harmonizer.  Another may 
analyze the live input to perform tempo tracking [1,3,4], 
which in turn will influence the tempo of events performed in 
the current score.  Yet others might add audio effects such as 
spatialization and reverb.  All of these instruments and their 
imbedded algorithms can be invoked at the same time, and 

there can be any number of instantiations of each instrument 
at any particular moment. 

The independence of dozens of simultaneously performing 
instruments is guaranteed by the unique state space that 
defines each instantiation.  When a single note is turned off, 
the state space of the sounding instrument may be returned to 
the memory pool and thus become available for instantiation 
of some other instrument type.  This amounts to continuous 
garbage collection. In an implementation with limited 
memory (such as a real-time hardware synthesizer) there are 
numerous algorithms that can be invoked for streamlining 
this process. 

All processing within Csound is done in floating-point 
arithmetic, and the conversion to and from fixed-point audio 
is done as the streams enter and leave the Csound 
environment.  Csound processes audio at CD rates (44.1 
KHz) and proceeds through chronological time by block-
processing the audio in control period blocks of 1 to 10 
milliseconds.  Since each musical note will last for many such 
periods, this means that each score event and the instantiated 
instrument assigned to perform it can together be viewed as a 
continuous active object whose momentary performance 
deadline is the end of the current control period.  In a dense 
part of a symphony orchestra simulation there may be 
hundreds of these objects alive at any one moment. 

The original Csound is now an Open Source standard used 
the world over [2].  A version of Csound called NetSound has 
become the core technology in MPEG-4 audio [5,6].  Some 
applications of Csound�s unique spectral data types can be 
found in [3]. 
 
4 Extended Csound�Enabling a DSP as an 
All-Purpose Real-Time Audio Processor 
 

Many tasks of Csound processing are not well-suited to 
general-purpose serial processors, and some of these�
converting between time-domain and frequency-domain 
signals and invoking several iterations of small loops of 
code�will give an array processor with built-in butterfly 
hardware, SIMD processing power, and a non-trivial amount 
of on-chip memory a distinct advantage over serial 
processors.  This is especially the case for a chip that 
specializes in high-speed floating point processing. 

In 1995 Csound was ported to the Analog Devices ADSP-
21060, for which ADI developed a series of hosting PCI 
boards that included audio codecs, and Uarts suitable for real-
time MIDI I/O.  The sudden propelling of Csound into real-
time interactive mode engendered an explosion of its audio 
Opcode repertoire.  Moreover, its ability to handle MIDI files 
and streams was greatly extended.  This new version now 
with over 300 opcodes became known as Extended Csound 
[7]. 

Some advantages were immediate.  The lightning response 



 
 

of this new system was evident when it was played as a 
keyboard synthesizer.  The best keyboards in the industry 
have a keystroke-to-sound delay of less than 5 milliseconds.  
The delay for Extended Csound is just two control periods�
one for the active object processing described above, one-half 
for injecting the MIDI event into the active event list, and 
one-half for placing the resulting audio in the buffered output 
channel.  When the control period is set to 1 msec, keyboard 
response is 2 msecs�a response unknown in the industry. 

One innovation was especially effective here.  The MIDI 
Manager, a program that fields incoming commands and 
resends them to the synthesizer units, was not relegated to a 
host microprocessor as in systems that incorporate ASIC�s for 
their horsepower.  Instead it is DSP-resident and interrupt 
driven, so that  incoming events are immediately instantiated 
and inserted into the threaded list of active instruments.  The 
MIDI Manager is basically a resource-sharing object amongst 
other instantiated objects. 

Other advantages stem from the independent instantiation 
of all active objects (see above).  Commercial synthesizers are 
typically built upon a single audio-processing method (DX-7 
FM, Roland LA synthesis, Kurzweil and Ensoniq wave-table, 
Korg physical model), and though the computational 
complexity of a single voice is different for each synthesizer, 
it is the same for each note the instrument plays, so that the 
computational requirement for each note is trivial to predict. 

Extended Csound is different.  Since it can be any or all of 
the above algorithms simultaneously, each active note will put 
a different load on the resources depending on its specific 
computational complexity.  To deal with this, each instrument 
prototype has built-in load-sensing code that can dynamically 
measure the computational cost of its instantiations.  When 
the Csound monitor senses it is falling behind (i.e the output 
DAC buffer is emptying much faster than it is being filled), it 
can accurately and gently (i.e. silently) remove just the right 
number of inner overloading voices for stability to be 
regained. 

The success of Extended Csound�ADSP combination in 
professional demonstrations soon led to requests that it be 
directed at tasks requiring considerably more compute power. 

 
5 Multiprocessor Csound:  Dynamic Load 
Distribution amongst Multiple Resources that 
can handle Unpredictable Demands 

 
The ADSP 21000 series of signal processors was designed 

to run co-operatively over a dedicated external bus that could 
accommodate up to six processors in tight synchrony.  The 
on-chip memory of each processor has a unique bus address, 
and DSP-to-DSP communication of semaphores and DMA 
blocks of data can be in either single-target or broadcast 
mode.  Also, any processor can reach inside the status 
registers of any other processor to find what is going on. 

The applications that ADI had in mind were compute 
intensive, either from breadth of data to be processed or the 
depth of processing required.  In either case a task is typically 
subset in advance, and the data sent by DMA from one 
processor to the next until the summary task is completed on 
schedule. 

In Csound processing, the load is unpredictable and the 
network of dependencies is erratic.  A keyboard player may 
put his whole forearm on the instrument, or a new MIDI file 
may suddenly request an entire change of voice models and 
audio effects, or a singer may suddenly slow down while 
simultaneously dialing a higher pitch transposition with full 
voice harmonizer effects. 

A task-list of varying and unpredictable length is easily 
accommodated by the threaded list of active objects described 
above.  The challenge is to direct the compute power of six 
DSP�s onto this dynamically varying task load.  The solution 
lies in organizing the DSP�s in a Master-Slave relationship, 
modified to meet the inter-dependencies of certain tasks and 
the strict real-time deadlines of control-period processing. 

At the start of each control period, the Master processor 
fields all incoming MIDI commands and score events, and 
updates the list of instruments potentially active.  Any new 
instantiations are initialized at this time, meaning that their 
new state memory space is allocated, any sampling oscillators 
will be given compute cycles to locate their samples and reset 
their phases, new filter coefficients will be determined, and 
reverberators will allocate and clear their space to zero.  All 
of this happens in zero simulated time, since no output 
samples are generated.  And since there may be 20 or 40 new 
Midi and score events at any one moment, this initializing 
task is efficiently shared amongst all the processors available. 

Once initialization is complete, the Master next divides the 
list of active instrument tasks between all available 
processors.  This is done with pre-knowledge of the load 
being placed on each one since (as in the single-DSP version) 
each active object template maintains an estimate of the load 
it will incur, calculated during preceding control periods. 
This requires care, since some objects depend on others for 
data, and the most intensive tasks should ideally be 
distributed first.  The Master will try to assign itself the least 
work, since it must also field interrupts from MIDI event 
arrivals and completed DMA transfers.  The set of DSP�s can 
now begin audio-generating performance. 

If this dynamically balanced task list is found to place too 
much load on the multi-processor resources, causing the 
audio output buffer to drain, the same technique of voice-
stealing for single-processor applications works equally well 
here.  The Master processor will redistribute the currently 
active objects whenever the threaded task-list changes, and 
while this is normally due to notes being started and stopped 
by the MIDI stream and score file, a soft-ware stolen  note 
will also trigger the same redistribution of resources. 

A Csound active object list has a tree structure, in which 



 
 

the large bulk of generating objects will gradually combine 
their outputs and forward them to a lower network of effects 
objects (delays, reverbs, etc).   This incurs dependencies at 
some nodes of the tree, and this must be understood by a 
resource-conscious Master scheduler.  Other dependencies 
will derive from that fact that shared input signals (voice mic 
and incoming audio streams) must be broadcast to all 
dependent objects.  Ultimately the path is towards a stereo 
pair of effects-enhanced audio outputs, arriving on time 
before the close of the current control period. 

The passage of musical time results from a succession of 
control periods, each receiving the resources it needs to 
complete its tasks on time.  A few moments thought will 
reveal that every active audio object may be assigned to a 
different DSP on successive control periods, and this is true.  
In fact a single note of a melody may be successively 
generated by all six DSP�s in just six control periods of a few 
milliseconds each, and yet the melody note must emerge 
clean and without blemish.  This is possible due to the fact 
that Multiprocessor Csound is truly object-oriented, and the 
threaded task list is dynamically distributed between an 
arbitrary number (1 to 6) of parallel cooperating processors. 
 
6 Time-Smearing the Task Depth 

 
Some refinements to this structure should be mentioned at 

this point.  First, merging several audio streams in a Csound 
tree requires that all contributing processors must first 
achieve sync.  This is accomplished with the Csound sync 
command, which forces all denoted resources to quiesce 
before merging begins.  Several levels of sync may be active 
at a single time, with several merges possible in parallel. 

Second, shared use of the dedicated bus for interprocessor 
DMA�s and access to external blocks of data require secure 
and fair arbitration.  Since the tasks distributed to each 
processor at the start of a control period will also determine 
the order of DMA�s in each, a threaded DMA list enables 
software chaining of DMA�s in the order they are needed.  
Competing DSP�s will then participate in a software token-
passing scheme that assures that bus-lock is distributed 
efficiently and without competitive thrashing. 

Although graceful degradation of a large MIDI score is 
handled by the voice-stealing described above, being able to 
keep all DSP�s maximally busy is a preferred strategy.  A 
typical Csound tree may have a hundred simultaneous objects 
near its top but only one or two large ones (reverbs) near its 
base, which can leave some processors idle while a smaller 
number work to complete the tree.  Using tree-relevant 
directives in the Orchestra template, compute-intensive 
effects objects can be folded back to run at the top of the next 
control period.  While this complicates the tree, it enables 
maximum utilization of resources, and its realization fits 
neatly into the structures of Dynamic Load Distribution on 
which Multiprocessor Csound is based. 

 
7 A Major First for the Audio Industry 

 
The impetus for developing an efficient Multiprocessor 

Csound came from two Japanese companies, Denon (who first 
licensed the technology from Analog Devices) and Taito 
Corporation (the fourth largest Karaoke manufacturer in 
Japan and the first to introduce Communication Karaoke).  
Multiprocessor board design and software support was 
provided by Epigonaudio.  The goal of this initiative was to 
bring the flexibility of software-only audio processing into an 
otherwise rigid ASIC-dominated industry. 

The result is a new Taito system called the Lavca.  It uses 3 
ADSP 21161 SIMD processors amassing 1.8 Gigaflops (peak) 
of tightly-coupled multiprocessing to deliver professional 
Karaoke performance including 64-voice MIDI synthesis, on-
the-fly MPEG decodes, full effects processing, pitch and 
tempo modification, dynamic EQ, voice tracking and 
enhancement such as following tempo changes and correcting 
wrong pitches.  The audio system is paired with a custom 
video system, and both are supported by an audio subsystem, 
various video monitoring and display devices, and a host 
interface that can access data streams via internet and 
satellite. 

The absence of audio-processing ASIC�s in a professional 
audio product is a first for the audio industry.  Although the 
system is available only in Japan, this paper will conclude 
with a live demonstration of the flexibility and power of its 
comprehensive software-only audio-processing. 
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